

Using wood for fuel in the North-Eastern Part of India - A review of the current situation

Ruby*, Garima Tiwari

Department of Forestry and Environmental Sciences, Guru Ghasidas University (A central university), Bilaspur (CG), India *Correspondence:: rubysober@gmail.com

Received: 12 Jul 2024; Received in revised form: 15 Aug 2024; Accepted: 23 Aug 2024; Available online: 01 Sep 2024 ©2024 The Author(s). Published by Infogain Publication. This is an open-access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Abstract— The domestic usage of fuelwood as the primary energy source has created considerable deforestation in North East India. The extraction of most fuel wood from wood is one of the principal causes of disturbance to the native forest flora of north east India. In this study, scientific journals, edited books, and other scientific databases were studied to examine fuelwood consumption trends in the North East India. A total of 162 plant species from 53 families were utilized as fuel by the natives of the region of seven sister states, along with Sikkim, according to a review of the relevant literature. Depending on their local availability, different plant species have been used as fuels in diverse locations. Schima wallichi, A. procera, and Toona ciliata were the most profound species reported in scientific literature. The FVI ranges from 22678 to 2.43 in the listed species. The accumulated data on fuelwood consumption patterns and fuelwood species utilized in the NEH could serve as a baseline for future studies and policy formulation, thus aiding in conserving the region's forest resources.

Keywords— Calorific value, fuelwood, Fuel-Value Index, socio-economic, sustainable energy.

I. INTRODUCTION

One of the main factors contributing to the degradation of forests in many developing nations is fuelwood. In India, fuelwood is the cheapest and most accessible source for most of the population, especially those living in rural areas (Dayanand & Olivia E. Atherton1, Jennifer L. Tackett2, Emilio Ferrer1, 2018; Hussain et al., 2017; Sharma & Dash, 2022). The primary energy source in all Indian hilly settlements is fuelwood. In India, 49% of households use fuelwood as their primary fuel for cooking (Khanwilkar et al. 2021). In developing countries, including India, fuelwood is the primary and most important source of traditional domestic energy used for cooking, heating, and other purposes (Akpalu et al., 2011; Foundation, 2010; Singh et al., 2021). The demand for fuelwood has grown much faster than its supply. The North Eastern Himalayan (NEH) tribal regions experience a similar situation, clearly related to the loss of forest cover. In the North Eastern Himalayan (NEH) region, biomass is a major energy source used by almost 90% of the tribal population. However, the region's ecosystem has deteriorated

ISSN: 2456-1878 (Int. J. Environ. Agric. Biotech.) https://dx.doi.org/10.22161/ijeab.95.3 significantly due to changing agriculture combined with excessive deforestation or the harvest of timber and fuel. In the north eastern zone of India, a huge amount, almost 3-4 fold higher fuelwood consumption rate, is used compared to other parts of the country. In the North Eastern Himalayan region, the demand for fuelwood is more than 228 million tons, with a substantial supply of 128 million tons (Iiyama et al., 2014; Saxena et al., 2016). There is a huge gap between the demand and supply of fuelwood, which leads to pressure on existing forests to overcome the scarcity of this huge demand. Based on satellite images and official estimates, the north eastern region has 163,799 sq km of forest, constituting approximately 64% of the total area (Ghilardi et al., 2009). Most (approximately 80%) of the North Eastern Himalayan (NEH) population lives in rural areas. The tribal of the NEH region relies heavily on forest resources for subsistence, and 90% of the region's population uses biomass as an important energy source (Khuman et al., 2011). Mass afforestation using suitable firewood tree species is required to meet the rising demand for fuelwood. Extensive farming of firewood could be the

only alternative to bridge the gap between demand and supply (Campos et al., 2019; Tewari et al., 2003).

Farming farmers should prefer species with good calorific value, Fuelwood Value Index (FVI), and native species (Deka et al., 2007; Ojelel et al., 2015). Thus, the place's ecosystem remains balanced, and demand can be fulfilled. For this purpose, we need to compile existing information (availability, Fuel Value Index, species) on fuelwood resources utilized in India's north eastern region for policymaking to achieve sustainable development (Bhatt & Sachan, 2004; Negi et al., 2018). The present study was undertaken to review studies conducted on fuelwood consumption in different NEH region villages and to compile a comprehensive list of plant species used as fuel by the region's local people.

Study area

The North Eastern Himalayan region comprises the states of Manipur, Meghalaya, Nagaland, Sikkim, Tripura, Arunachal Pradesh, and Mizoram (Seven Sisters) (between 21.50 °N and 29.50 °N latitude and 85.5°-97.5°E longitude). It represents a distinct agro-climatic area in India. The hilly states of the region have a total geographical area of 183,741 km² (5.589% of India) and are populated by 12.41m people (1.13% of the country). An undulating topography and wide variations in altitude, rainfall, temperature, and soil conditions characterize the NEH region. The climate is typically monsoonal, with approximately 85% of the annual precipitation occurring during the rainy season. The average maximum temperature during the rainy season is 30 °C, and the average minimum temperature is 14 °C, with a maximum and minimum of 20 °C and 8 °C, respectively, during winter.

II. MATERIALS AND METHODS

The literature on fuelwood consumption in various villages of the NEH available in scientific journals, edited books, and other scientific databases was searched. Only fieldbased surveys carried out in the NEH region that reported first-hand information on fuelwood consumption in different villages were included in this study. Confusing or erroneous data, where information on fuelwood consumption was unclear, were omitted from the analysis. An exhaustive list of plants used as fuel was compiled.

III. RESULTS

A detailed list of plant species reported to be used as fuelwood in NEH, India, along with their botanical name and calorific value of the respective species (KJg⁻¹ dry weight), is given in (Table 1). A total of 162 plant species belonging to 53 families were used as fuelwood in NEH villages. Based on scientific literature citations, the most preferred fuelwood species used in the NEH were Schima wallichi and Albizia procera, cited in five studies. This was followed by Toona ciliata, which were mentioned in three studies. As reported in two studies, other preferred species were Cassia siamea, Terminalia myriocarpa, and Pinus kesiya. Fabaceae family species dominate 16.67%, followed by Theaceae and Meliaceae at 4.84% in this study. Different authors calculated the Fuel Value Index (FVI), obtained the highest value of 22,678 in Rhododendron arboretum and the lowest value of 2.43 in Bombax ceiba.

IV. DISCUSSION

The sustainable use of forests and associated resources is a complicated topic that encompasses social needs, ethical and cultural values, and the socio-economic situations of forest-dependent people (Plieninger et al., 2023; Purvis et al., 2019). The dependence on forests for fuelwood results in catastrophic deforestation throughout the Indian continent (Chakraborty et al., 2018; Ghanbari & Kern, 2021). In the developing world, biomass is the predominant energy source for residential consumption (Benti et al., 2021). Utilization of fuelwood is widespread in rural areas of the developing world, particularly in areas where these fuels are locally accessible (Ghazoul & Evans, 2004). Communities use fuelwood for numerous uses, mostly firewood and house construction, resulting in overuse and increased deforestation. In India, 49% of households use fuelwood as the primary fuel for cooking (Nagothu, 2001). Sudha et al. (2003) estimated that 11.28 million individuals collect firewood in India.

Fig 1: Graphical representation of Species Percentage

The International Energy Agency observed in its 2006 World Energy Outlook Report that Indian households favored using wood burners to bake traditional bread. (Kumar et al., 2020). Due to the reduction in forest cover, unsustainable firewood harvesting has considerably contributed to biodiversity loss and soil erosion (Damette & Delacote, 2011). Several factors, including household size, education, lifestyle, ethnicity, geographic location, climatic condition, subsidies, energy supply factors, price, availability, and accessibility, influence fuel selection in the villages of the North Eastern Himalayan region (Narasimha Rao & Reddy, 2007; Zou & Luo, 2019).

S.No	Name of the Species	Family	FVI	References
1	Acacia auriculiformis	Fabaceae.	1851	Kataki and Konwer(2002)
2	Acacia nilotica	Fabaceae	2089	Kataki and Konwer(2002)
3	Acer oblongum	Sapindaceae	5403, n.a	Chettri and Sharma(2008), Bhatt and Sachan(2004)
4	Acrocarpus fraxinifolius	Fabaceae	306	Sahoo et.al(2014)
5	Actephila excelsa	Phyllanthaceae	370	Kataki and Konwer(2002)
6	Adina cordifolia	Rubiaceae	529	Sahoo et.al(2014)

Table 1: Plant species used as fuelwood in the Northeastern Himalayan Region, India.

7	Adina polycephala	Rubiaceae	554	Kataki and Konwer(2002)
8	Aesculus assamicus	Sapindaceae	1008, n.a	Kataki and Konwer(2002), Bhatt and Sachan(2004)
9	Albizia chinensis	Fabaceae	242	Sahoo et.al(2014)
10	Albizia lebbeck	Fabaceae	1329	Kataki and Konwer(2002)
11	Albizia odoratissima	Verbenacece	475.99	Sedai et.al(2016)
12	Albizia procera	Fabaceae	532, 16.588, 1793,291.6	Sahoo et.al(2014), Taran et.al(2016), Sahoo et.al(2014), Taran et.al(2016), Kataki and Konwer(2002), Rai et.al(2002)
13	Albizia thomsoni	Leguminosae	867	Sahoo et.al(2014)
14	Albizzia chinensis	Fabaceae.	477	Kataki and Konwer(2002)
15	Alnus nepalensis	Betulaceae	692, 780	Chettri and Sharma(2008), Kataki and Konwer(2002)
16	Andromeda elliptica	Ericaceae	3933.8	Rai et.al(2002)
17	Anogeissus acuminata	Combretaceae	1370,7.41	Sahoo et.al(2014), Taran et.al(2016)
18	Aralia aramata	Araliaceae	n.a	Lynser et.al(2020)
19	Artocarpus integrifolia	Moraceae	n.a	Bhatt and Sachan(2004)
20	Bahunia Variegata	Caesalpiniaceae	9.882	Taran et.al(2016)
21	Bambusa balcooa	Poaceae	n.a	Bhatt and Sachan(2004)
22	Bambusa cacharensis	Poaceae	n.a	Bhatt and Sachan(2004)
23	Bambusa nutans	Proteaceae	n.a	Bhatt and Sachan(2004)
24	Bambusa pallida	Poaceae	n.a	Bhatt and Sachan(2004)
25	Bauhinia variegate	Theaceae	2074.62	Sedai et.al(2016)
26	Beilschmiedia sikkimensis	Lauraceae	8935	Chettri and Sharma(2008)
27	Betula alnoides	Betulaceae	48,14	Chettri and Sharma(2008)
28	Betula spp	Betulaceae	n.a	Bhatt and Sachan(2004)
29	Bischofia javanica	Phyllanthaceae	272	Sahoo et.al(2014)
30	Bombax ceiba	Malvaceae	2.436	Taran et.al(2016)
31	Bridelia retusa	Sapotaceae	2162.7	Sedai et.al(2016)
32	Callicarpa arborea	Verbenaceae	580	Sahoo et.al(2014)
33	Camellia sp.	Theaceae	n.a	Lynser et.al(2020)
34	Careya arborea	Lecythidaceae	7.24	Taran et.al(2016)
35	Cassia fistula	Caesalpiniaceae	8.347	Taran et.al(2016)
36	Cassia siamea	Caesalpiniaceae	1062, 10.03	Kataki and Konwer(2002), Taran et.al(2016)
37	Castanopsis hystrix	Fagaceae	9080	Chettri and Sharma(2008)
38	Castanopsis indica	Primulaceae	1705.64	Sedai et.al(2016)
39	Castanopsis tribuloides	Fagaceae	726, 1469.1	Sahoo et.al(2014), Rai et.al(2002)
40	Catanopsis sp.	Fagaceae	n.a	Lynser et.al(2020)
41	Cedrela serrata Royle.	Meliaceae	1050	Kataki and Konwer(2002)

ISSN: 2456-1878 (Int. J. Environ. Agric. Biotech.) https://dx.doi.org/10.22161/ijeab.95.3

42	Celtis australis	Phyllanthaceae	1241.58	Sedai et.al(2016)
43	Chuckrasia tabularis	Meliaceae	n.a	Bhatt and Sachan(2004)
44	Cinnamomum impressinerium	Lauraceae	982.8	Rai et.al(2002)
45	Cryptomeria japonica	Cupressaceae	n.a	Bhatt and Sachan(2004)
46	Dendrocalamus hamiltonii	Poaceae	n.a	Bhatt and Sachan(2004)
47	Dendrocalamus sp.	Poaceae	_	Rai et.al(2002)
48	Derris robusta	Fabaceae	691	Sahoo et.al(2014)
49	Dillenia pentagyna	Dilleniaceae	4.576	Taran et.al(2016)
50	Dipterocarpus macrocarpus	Dipterocarpaceae	n.a	Bhatt and Sachan(2004)
51	Drypetes lancifolia	Putranjivaceae	_	Rai et.al(2002)
52	Duabanga indica	Lythraceae	n.a	Bhatt and Sachan(2004)
53	Dysoxylum binectariferum	Myrtaceae	1331.21	Sedai et.al(2016)
54	Dysoxylum procerum	Meliaceae	10.952, 2493.49	Taran et.al(2016), Sedai et.al(2016)
55	Elaeagnus umbellata	Elaeagnaceae	1082	Kataki and Konwer(2002)
56	Elaeocarpus lanceifolius	Elaeocarpaceae	390	Sahoo et.al(2014)
57	Elaeocarpus sp.	Elaeocarpaceae	n.a	Lynser et.al(2020)
58	Engelhardtia sp.	Juglandaceae	_	Rai et.al(2002)
59	Engelhertia spicata	Juglandaceae	n.a	Lynser et.al(2020)
60	Eurya acuminata	Theaceae	3600,n.a	Chettri and Sharma(2008), Lynser et.al(2020)
61	Exbucklandia populnea	Hamamelidaceae	n.a	Lynser et.al(2020)
62	Ficus hispida	Moraceae	3.203	Taran et.al(2016)
63	Ficus semicordata	Moraceae	291	Sahoo et.al(2014)
64	Garcinia paniculata	Clusiaceae	n.a	Bhatt and Sachan(2004)
65	Garcinia pedunculata	Clusiaceae	n.a	Bhatt and Sachan(2004)
66	Garcinia sp.	Clusiaceae	n.a	Lynser et.al(2020)
67	Gmelina arborea	Lamiaceae	10.868	Taran et.al(2016)
68	Grevillea robusta	Proteaceae	742	Kataki and Konwer(2002)
69	Helicia nilagirica	Proteaceae	n.a	Lynser et.al(2020)
70	Holarrhena antidysenterica	Apocynaceae	3.962	Taran et.al(2016)
71	Jambosa sp.	Myrtaceae	_	Rai et.al(2002)
72	Juglandaceae	Juglandaceae	1358.6	Rai et.al(2002)
73	Kydia calcyna	Meliaceae	4091.38	Sedai et.al(2016)
74	Lagerstroemia citrata	Lythraceae	n.a	Bhatt and Sachan(2004)
75	Lagerstroemia parviflora	Lythraceae	448	Kataki and Konwer(2002)
76	Lagerstroemia speciosa	Lythraceae	n.a	Bhatt and Sachan(2004)
77	Lantana camara	Verbenaceae	516	Kataki and Konwer(2002)
78	Leucosceptrum canum	Lamiaceae	1027.8	Rai et.al(2002)
79	Lithocarpus sp.	Fagaceae	n.a	Lynser et.al(2020)
80	Litsea elongata	Lauraceae	448	Chettri and Sharma(2008)

81	Litsea polyantha	Lauraceae	369, 926.03	Kataki and Konwer(2002), Sedai et.al(2016)
83	Macaranga denticulata	Euphorbiaceae	n.a	Bhatt and Sachan(2004)
84	Macaranga indica	Euphorbiaceae	515	Sahoo et.al(2014)
85	Macaranga pustulata	Euphorbiaceae	672.6, 802.7	Rai et.al(2002), Sedai et.al(2016)
86	Macropanax dispermus	Araliaceae	220	Sahoo et.al(2014)
87	Maesa chisia	Primulaceae	429.9	Rai et.al(2002)
88	Magnoli hodgsonii	Magnoliaceae	1803.23	Sedai et.al(2016)
89	Mallotus phillipensis	Lamiaceae	1931.09	Sedai et.al(2016)
90	Melastoma malabathricum	Melastomataceae	6.498	Taran et.al(2016)
91	Melia azedarach	Meliaceae	968	Kataki and Konwer(2002)
92	Melocanna baccifera	Poaceae	n.a	Bhatt and Sachan(2004)
93	Mesua ferrea	Clusiaceae	1244	Sahoo et.al(2014)
94	Michelia champaca	Magnoliaceae	n.a	Bhatt and Sachan(2004)
95	Momosops elengi	Fagaceae	819.56	Sedai et.al(2016)
96	Moraxella oblonga	Moraxellaceae	n.a	Bhatt and Sachan(2004)
97	Myrica esculenta	Myricaceae	801	Sahoo et.al(2014)
98	Myrica sp.	Myricaceae	n.a	Lynser et.al(2020)
99	Myrsine semiserrata	Fabaceae	1723.68	Sedai et.al(2016)
100	Oroxylum indicum	Bignoniaceae	4.392	Taran et.al(2016)
101	Persea sp.	Lauraceae	n.a	Lynser et.al(2020)
102	Photinia sp.	Rosaceae	n.a	Lynser et.al(2020)
103	Phyllocharis undulata	Chrysomelidae	n.a	Bhatt and Sachan(2004)
104	Pinus kesiya	Pinaceae	n.a, 1308	Lynser et.al(2020), Kataki and Konwer(2002)
105	Pinus wallichiana	Pinaceae	560	Kataki and Konwer(2002)
106	Premna integrifolia	Fabaceae	274.01	Sedai et.al(2016)
107	Prunus cerasoides	Rosaceae		
108	Prunus nepalensis	Rosaceae	9046	Chettri and Sharma(2008)
109	Pterospermum acerifolium	Euphorbiaceae	2347.87	Sedai et.al(2016)
110	Quercus delbata	Fagaceae	661	Kataki and Konwer(2002)
111	Quercus floribunda	Fagaceae	895	Sahoo et.al(2014)
112	Quercus glauca	Fagaceae	725	Kataki and Konwer(2002)
113	Quercus helferiana	Fagaceae	1110	Sahoo et.al(2014)
114	Quercus lamellosa	Fagaceae	16431, 3860.7	Chettri and Sharma(2008), Rai et.al(2002)
115	Quercus lineata	Fagaceae	10,59,63,539.60	Chettri and Sharma(2008),Rai et.al(2002)
116	Quercus pachyphylla	Fagaceae	1361, 1210	Sahoo et.al(2014), Sahoo et.al(2014)
117	Quercus semicaprifolia	Fagaceae	748	Kataki and Konwer(2002)
118	Quercus serrate	Fagaceae	1077	Sahoo et.al(2014)

119	Quercus sp.	Fagaceae	n.a	Lynser et.al(2020)
120	Quercus xylocarpa	Fagaceae	1193	Sahoo et.al(2014)
121	Rhododendron arboreum	Ericaceae	22,678	Chettri and Sharma(2008)
122	Rhododendron barbatum	Ericaceae	9855	Chettri and Sharma(2008)
123	Rhododendron falconeri	Ericaceae	10,241	Chettri and Sharma(2008)
124	Rhus javanica	Anacardiaceae	n.a	Lynser et.al(2020)
125	Rhus parviflora	Anacardiaceae	370	Kataki and Konwer(2002)
126	Rhus semialata	Anacardiaceae	693.1	Rai et.al(2002)
127	Rhus succedanea	Anacardiaceae	594.8	Rai et.al(2002)
128	Salix tetrasperma	Salicaceae	687	Kataki and Konwer(2002)
129	Sapindus laurifolius	Sapindaceae	388	Kataki and Konwer(2002)
130	Sapindus mukorossi	Sapindaceae	801	Kataki and Konwer(2002)
131	Schima khasiana	Theaceae	n.a	Bhatt and Sachan(2004)
132	Schima wallichi	Theaceae	889.6, 694.81, 928,n.a,11365	Rai et.al(2002), Sedai et.al(2016), Sahoo et.al(2014),Lynser et.al(2020),Chettri and Sharma(2008)
133	Shorea assamica	Dipterocarpaceae	n.a	Bhatt and Sachan(2004)
134	Shorea robusta	Dipterocarpaceae	1027	Kataki and Konwer(2002)
135	Simingtonia populnea	Hamamelidaceae	n.a	Bhatt and Sachan(2004)
136	Sterculia villosa	Malvaceae	2.75	Taran et.al(2016)
137	Stereospermum personatum	Bignoniaceae	769	Sahoo et.al(2014)
138	Styrax serrulatum	Styracaceae	497	Sahoo et.al(2014)
139	Symplocos crataegioides	Symplocaceae	473	Kataki and Konwer(2002)
140	Symplocos ramosissima	Symplocaceae	1033	Chettri and Sharma(2008)
141	Symplocos sp.	Symplocaceae	n.a	Lynser et.al(2020)
142	Symplocos theifolia	Symplocaceae	713.4	Rai et.al(2002)
143	Syzygium cerasoids	Combretaceae	851.42	Sedai et.al(2016)
144	Syzygium cumini	Myrtaceae	9.083	Taran et.al(2016)
145	Syzygium tetragonum	Myrtaceae	n.a	Lynser et.al(2020)
146	Tectona grandis	Lamiaceae	12.353	Taran et.al(2016)
147	Terminalia arjuna	Combretaceae	714	Kataki and Konwer(2002)
148	Terminalia bellerica	Combretaceae	460	Kataki and Konwer(2002)
149	Terminalia chebula	Combretaceae	602	Kataki and Konwer(2002)
150	Terminalia myriocarpa	Combretaceae	n.a, 1801.73	Bhatt and Sachan(2004),Sedai et.al(2016)
151	Terminalia tomentosa	Combretaceae	433	Kataki and Konwer(2002)
152	Tetrameles nudiflora	Tetramelaceae	218	Sahoo et.al(2014)
153	Toona ciliata	Meliaceae	445, 8.158,343	Kataki and Konwer(2002), Taran et.al(2016),Sahoo et.al(2014)
154	Trema orientalis	Cannabaceae	2.729	Taran et.al(2016)

ISSN: 2456-1878 (Int. J. Environ. Agric. Biotech.) https://dx.doi.org/10.22161/ijeab.95.3

155	Trewia nudiflora	Euphorbiaceae	12.456	Taran et.al(2016)
156	Viburnum contifolium	Adoxaceae	991	Kataki and Konwer(2002)
157	Viburnum sp.	Adoxaceae	-	Rai et.al(2002)
158	Vitex altissima	Lamiaceae	2270.83	Sedai et.al(2016)
159	Vitex peduncularis	Lamiaceae	1276, 10.666	Sahoo et.al(2014),Taran et.al(2016)
160	Wendlandia grandis	Rubiaceae	877	Sahoo et.al(2014)
161	Wendlandia wallichii	Rubiaceae	n.a	Lynser et.al(2020)
162	Wightia speciosissima	Paulowniaceae	358	Sahoo et.al(2014)

Tribal reliance on wood for fuelwood as a key source of energy is generating severe deforestation in North Eastern Himalayan (Bhatt & Sachan, 2004; Bhatt & Tomar, 2002), which subsequently creates desertification in many parts of Meghalaya. Many people in north eastern India utilize fuelwood despite having access to alternative energy sources (Mottaleb & Rahut, 2021; Tofu et al., 2022). The average fuelwood consumption in NEH is 4.90 to 8.41 kg/capita/day, which is higher than previously reported values for other parts of Asia, such as 1.9–2.2 kg/capita/day for Southern India, 1.7–2.5 kg/capita/day for South and South-East Asian countries, 1.23 kg/capita/day for the Himalayan range of Nepal (Fox, 1984; Ives, 2004; Maikhuri, 1991).

Based on these tribal societies' fuelwood use patterns, deforestation must be carefully considered. It is vital to emphasize that if the current trends in fuelwood use in this region continue, there will be a shortage. Therefore, an urgent need is to educate indigenous tribes about preserving existing woods. Numerous studies have established a strong positive link between income and the amount of energy used (Angelsen et al., 2014; Chu & Karr, 2017; Coman et al., 2020). Many middle-income families in the region have access to LPG, but traditional chulha (wood burners) using fuelwood are still widely used for cooking. In addition, the remote areas of north eastern India have prevented many families from converting to modern fuels because of the distribution infrastructure. A literature review found that only a few studies have been undertaken on patterns of fuelwood consumption in North eastern India, and the majority were limited to small regions. Different approaches were utilized in further research to determine the pattern of per capita fuelwood usage. There is a need to record many aspects of fuelwood usage patterns in North Eastern India to formulate applicable laws. The data from the present study on fuelwood consumption patterns in North eastern India could be used to design and implement relevant technologies and management policies for the sustainable use of forest resources in this region.

V. CONCLUSION

People in the NEH have long relied on fuelwood as their primary energy source, which has resulted in significant deforestation across the state. On underutilized, deteriorated, and forested lands, it is imperative to construct large-scale energy plantations to avoid this catastrophe. However, when selecting tree species for energy plantations, special consideration should be given to Indigenous tree species traditionally favored for fuel by rural residents in the region. The fuel value index (FVI) is an essential screening criterion for acceptable fuelwood species. There is an urgent need for activities encouraging the conservation and sustainable use of imperiled forests in Northeast India. This paper outlines the tangible steps communities may take to better protect and manage impervious ecosystems. The woodlands in this region are renowned worldwide because of their rich biodiversity. The area is home to various cultural groups and has a staggering geographical variety.

ACKNOWLEDGMENT

The authors thank the Department of Forestry, Wildlife and Environmental Sciences head, Guru Ghasidas Vishwavidalayala, for providing the necessary facilities.

DECLARATION OF INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- Akpalu, W., Dasmani, I., & Aglobitse, P. B. (2011). Demand for cooking fuels in a developing country: To what extent do taste and preferences matter? *Energy Policy*, *39*(10), 6525– 6531. https://doi.org/10.1016/j.enpol.2011.07.054
- [2] Angelsen, A., Jagger, P., Babigumira, R., Belcher, B., Hogarth, N. J., Bauch, S., Börner, J., Smith-Hall, C., & Wunder, S. (2014). Environmental Income and Rural

Livelihoods: A Global-Comparative Analysis. *World Development*, 64(S1), S12–S28. https://doi.org/10.1016/j.worlddev.2014.03.006

- [3] Benti, N. E., Gurmesa, G. S., Argaw, T., Aneseyee, A. B., Gunta, S., Kassahun, G. B., Aga, G. S., & Asfaw, A. A. (2021). The current status, challenges, and prospects of using biomass energy in Ethiopia. *Biotechnology for Biofuels*, *14*(1), 1–24. https://doi.org/10.1186/s13068-021-02060-3
- [4] Bhatt, B. P., & Sachan, M. S. (2004). Firewood consumption pattern of different tribal communities in Northeast India. *Energy Policy*, 32(1), 1–6. https://doi.org/10.1016/S0301-4215(02)00237-9
- [5] Bhatt, B. P., & Tomar, J. M. S. (2002). Firewood properties of some Indian mountain tree and shrub species. *Biomass and Bioenergy*, 23(4), 257–260. https://doi.org/10.1016/S0961-9534(02)00057-0
- [6] Campos, P., Caparrós, A., Oviedo, J. L., Ovando, P., Álvarez-Farizo, B., Díaz-Balteiro, L., Carranza, J., Beguería, S., Díaz, M., Herruzo, A. C., Martínez-Peña, F., Soliño, M., Álvarez, A., Martínez-Jauregui, M., Pasalodos-Tato, M., de Frutos, P., Aldea, J., Almazán, E., Concepción, E. D., ... Montero, G. (2019). Bridging the Gap Between National and Ecosystem Accounting Application in Andalusian Forests, Spain. *Ecological Economics*, 157(September 2018), 218–236. https://doi.org/10.1016/j.ecolecon.2018.11.017
- [7] Chakraborty, A., Joshi, P. K., & Sachdeva, K. (2018). Capturing forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes. *Ambio*, 47(4), 504–522. https://doi.org/10.1007/s13280-017-0947-1
- [8] Chettri, N., & Sharma, E. (2009). A scientific assessment of traditional knowledge on firewood and fodder values in Sikkim, India. *Forest Ecology and Management*, 257(10), 2073–2078. https://doi.org/10.1016/j.foreco.2009.02.002
- [9] Chu, E. W., & Karr, J. R. (2017). Environmental Impact: Concept, Consequences, Measurement ☆. *Reference Module in Life Sciences*, 1–22. https://doi.org/10.1016/b978-0-12-809633-8.02380-3
- [10] Coman, C., Ţîru, L. G., Meseşan-Schmitz, L., Stanciu, C., & Bularca, M. C. (2020). Online teaching and learning in higher education during the coronavirus pandemic: Students' perspective. *Sustainability (Switzerland)*, *12*(24), 1–22. https://doi.org/10.3390/su122410367
- [11] Damette, O., & Delacote, P. (2011). Unsustainable timber harvesting, deforestation and the role of certification. *Ecological Economics*, 70(6), 1211–1219. https://doi.org/10.1016/j.ecolecon.2011.01.025
- [12] Dayanand, K., & Olivia E. Atherton1, Jennifer L. Tackett2, Emilio Ferrer1, and R. W. R. (2018). 乳鼠心肌提取 HHS Public Access. *Physiology & Behavior*, *176*(5), 139–148. https://doi.org/10.1016/j.erss.2021.102012.Firewood
- [13] Deka, D., Saikia, P., & Konwer, D. (2007). Ranking of fuelwood species by fuel value index. *Energy Sources, Part* A: Recovery, Utilization and Environmental Effects, 29(16), 1499–1506. https://doi.org/10.1080/15567030600820476
- [14] Foundation, M. S. S. R. (2010). Status Report on use of fuelwood in India. 1–12.
- [15] Fox, J. (1984). Firewood consumption in a Nepali village.

ISSN: 2456-1878 (Int. J. Environ. Agric. Biotech.) https://dx.doi.org/10.22161/ijeab.95.3 *Environmental Management*, 8(3), 243–249. https://doi.org/10.1007/BF01866966

- [16] Ghanbari, S., & Kern, C. C. (2021). Fuelwood harvest and no harvest effects on forest composition, structure, and diversity of arasbaran forests—a case study. *Forests*, 12(12). https://doi.org/10.3390/f12121631
- [17] Ghazoul, J., & Evans, J. (2004). SUSTAINABLE FOREST MANAGEMENT | Causes of Deforestation and Forest Fragmentation. *Encyclopedia of Forest Sciences*, 1367–1375. https://doi.org/10.1016/b0-12-145160-7/00018-1
- [18] Ghilardi, A., Guerrero, G., & Masera, O. (2009). A GISbased methodology for highlighting fuelwood supply/demand imbalances at the local level: A case study for Central Mexico. *Biomass and Bioenergy*, *33*(6–7), 957–972. https://doi.org/10.1016/j.biombioe.2009.02.005
- [19] Heltberg, R., Arndt, T. C., & Sekhar, N. U. (2000). Fuelwood consumption and forest degradation: A household model for domestic energy substitution in rural India. *Land Economics*, 76(2), 213–232. https://doi.org/10.2307/3147225
- [20] Hussain, A., Dasgupta, S., & Bargali, H. S. (2017). Fuelwood consumption patterns by semi-nomadic pastoralist community and its implication on conservation of Corbett Tiger Reserve, India. *Energy, Ecology and Environment*, 2(1), 49–59. https://doi.org/10.1007/s40974-016-0050-7
- [21] Iiyama, M., Neufeldt, H., Dobie, P., Njenga, M., Ndegwa, G., & Jamnadass, R. (2014). The potential of agroforestry in the provision of sustainable woodfuel in sub-Saharan Africa. *Current Opinion in Environmental Sustainability*, 6(1), 138– 147. https://doi.org/10.1016/j.cosust.2013.12.003
- [22] Ives, J. D. (2004). The Theory of Himalayan Environmental Degradation : Its Validity and Application Challenged by Recent Research Author (s): Jack D. Ives Conference : The Himalaya-Ganges Problem (Aug., 1987), pp. 189-199 Published by : International Mountain Society. 7(3), 189– 199.
- [23] Kataki, R., & Konwer, D. (2002). Fuelwood characteristics of indigenous tree species of north-east India. *Biomass and Bioenergy*, 22(6), 433–437. https://doi.org/10.1016/S0961-9534(02)00026-0
- [24] Khanwilkar, S., Gould, C. F., DeFries, R., Habib, B., & Urpelainen, J. (2021). Firewood, forests, and fringe populations: Exploring the inequitable socio-economic dimensions of Liquified Petroleum Gas (LPG) adoption in India. *Energy Research and Social Science*, 75(May 2020), 102012. https://doi.org/10.1016/j.erss.2021.102012
- [25] Khuman, Y. S. C., Pandey, R., & Rao, K. S. (2011). Fuelwood consumption patterns in Fakot watershed, Garhwal Himalaya, Uttarakhand. *Energy*, 36(8), 4769–4776. https://doi.org/10.1016/j.energy.2011.05.011
- [26] Kumar, B., Singh, K., Sharma, J., & Gairola, S. (2020). A comprehensive review of fuelwood resources and their use pattern in rural villages of western Himalaya, India. *Plant Archives*, 20, 1949–1958.
- [27] Lynser, M. B., Makdoh, K., & Nongbri, B. (2020). Firewood consumption and extraction from community forests in East Khasi Hills District, Meghalaya: Its impact on woody species diversity and population structure. *Tropical Plant Research*, 7(3), 669–677. https://doi.org/10.22271/tpr.2020.v7.i3.084

- [28] Maikhuri, R. K. (1991). Fuelwood consumption pattern of different tribal communities living in Arunachal Pradesh in North-East India. *Bioresource Technology*, 35(3), 291–296. https://doi.org/10.1016/0960-8524(91)90127-6
- [29] Mottaleb, K. A., & Rahut, D. B. (2021). Clean energy choice and use by the urban households in India: Implications for sustainable energy for all. *Environmental Challenges*, 5(August), 100254.

https://doi.org/10.1016/j.envc.2021.100254

- [30] Nagothu, U. S. (2001). Fuelwood and fodder extraction and deforestation: Mainstream views in India discussed on the basis of data from the semi-arid region of Rajasthan. *Geoforum*, 32(3), 319–332. https://doi.org/10.1016/S0016-7185(00)00034-8
- [31] Narasimha Rao, M., & Reddy, B. S. (2007). Variations in energy use by Indian households: An analysis of micro level data. *Energy*, 32(2), 143–153. https://doi.org/10.1016/j.energy.2006.03.012
- [32] Negi, V. S., Joshi, B. C., Pathak, R., Rawal, R. S., & Sekar, K. C. (2018). Assessment of fuelwood diversity and consumption patterns in cold desert part of Indian Himalaya: Implication for conservation and quality of life. *Journal of Cleaner Production*, 196, 23–31. https://doi.org/10.1016/j.jclepro.2018.05.237
- [33] Ojelel, S., Otiti, T., & Mugisha, S. (2015). Fuel value indices of selected woodfuel species used in Masindi and Nebbi districts of Uganda. *Energy, Sustainability and Society*, 5(1), 4–9. https://doi.org/10.1186/s13705-015-0043-y
- [34] Plieninger, T., Shamohamadi, S., García-Martín, M., Quintas-Soriano, C., Shakeri, Z., & Valipour, A. (2023). Community, pastoralism, landscape: Eliciting values and human-nature connectedness of forest-related people. *Landscape and Urban Planning*, 233(January), 104706. https://doi.org/10.1016/j.landurbplan.2023.104706
- [35] Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. *Sustainability Science*, 14(3), 681–695. https://doi.org/10.1007/s11625-018-0627-5
- [36] Rai, Y. K., Chettri, N., & Sharma, E. (2002). Fuel wood value index of woody tree species from Mamlay Watershed in South Sikkim, India. *Forests Trees and Livelihoods*, 12(3), 209–219. https://doi.org/10.1080/14728028.2002.9752425
- [37] Sahoo, U. K., Lalremruata, J., & Lalramnghinglova, H. (2014). Assessment of fuelwood based on community preference and wood constituent properties of tree species in Mizoram, north-east India. *Forests Trees and Livelihoods*, 23(4), 280–288.

https://doi.org/10.1080/14728028.2014.943684

- [38] Saxena, N., Nations, U., & Programme, D. (2016). GCP / RAS / 154 / NET THE WOODFUEL SCENARIO AND POLICY ISSUES IN INDIA Centre for Sustainable Development. January 1997.
- [39] Sedai, P., Kalita, D., & Deka, D. (2016). Assessment of the fuel wood of India: A case study based on fuel characteristics of some indigenous species of Arunachal Pradesh. *Energy Sources, Part A: Recovery, Utilization and Environmental Effects*, 38(7), 891–897. https://doi.org/10.1080/15567036.2013.834399

ISSN: 2456-1878 (Int. J. Environ. Agric. Biotech.) https://dx.doi.org/10.22161/ijeab.95.3

- [40] Sharma, V., & Dash, M. (2022). Household energy use pattern in rural India: A path towards sustainable development. *Environmental Challenges*, 6(November 2021), 100404. https://doi.org/10.1016/j.envc.2021.100404
- [41] Singh, D., Zerriffi, H., Bailis, R., & LeMay, V. (2021). Forest, farms and fuelwood: Measuring changes in fuelwood collection and consumption behavior from a clean cooking intervention. *Energy for Sustainable Development*, 61, 196– 205. https://doi.org/10.1016/j.esd.2021.02.002
- [42] Sudha, P., Somashekhar, H. I., Rao, S., & Ravindranath, N. H. (2003). Sustainable biomass production for energy in India. *Biomass and Bioenergy*, 25(5), 501–515. https://doi.org/10.1016/S0961-9534(03)00087-4
- [43] Taran, M., Deb, D., & Deb, S. (2016). Utilization pattern of fuelwood plants by the Halam community of Tripura, Northeast India. *Energy Sources, Part A: Recovery, Utilization and Environmental Effects*, 38(17), 2545–2552. https://doi.org/10.1080/15567036.2015.1062821
- [44] Tewari, J. C., Tripathi, D., Narain, P., & Singh, S. P. (2003). A study of the structure, energy fluxes and emerging trends in traditional central himalayan agroforestry systems. *Forests Trees and Livelihoods*, *13*(1), 17–37. https://doi.org/10.1080/14728028.2003.9752442
- [45] Tofu, D. A., Wolka, K., & Woldeamanuel, T. (2022). The impact of alternative energy technology investment on environment and food security in northern Ethiopia. *Scientific Reports*, 12(1), 1–11. https://doi.org/10.1038/s41598-022-14521-2
- [46] Zou, B., & Luo, B. (2019). Rural household energy consumption characteristics and determinants in China. *Energy*, 182, 814–823. https://doi.org/10.1016/j.energy.2019.06.048